Reactions of Conjugated Arylazocycloalkenes with Grignard Reagents. Part 3. ${ }^{1}$ A Convenient Synthesis of 2,6-Diaryl- and 2-Alkyl-6-aryl-cyclohexanones

By Silvano Bozzini, Bruno Cova, Sergio Gratton, Adriana Lisini, and Amerigo Risaliti,* Istituto di Chimica, Università, 34127 Trieste, Italy

Abstract

A synthesis of the title compounds with the substituents at C-2 and C-6 trans to each other is described. 2-Arylcyclohexanones were converted into 1-phenylazo-6-arylcyclohexenes, which by reaction with Grignard reagents led to trans-2,6-diaryl- and trans-2-alkyl-6-aryl-cyclohexanone phenylhydrazones. These compounds by oxidative hydrolysis furnished the corresponding trans-ketones, which were readily epimerised into the more stable cis-isomers.

In continuing our studies on the reactions of conjugated arylazocycloalkenes with Grignard reagents,, ${ }^{1,2}$ we have examined the possibility of using these reactions as a novel entry into 2,6 -diaryl- and 2 -alkyl-6-aryl-cyclo-

Scheme (i) $\mathrm{Br}_{2}\left(\mathrm{CCl}_{4}\right)$; (ii) PhNHNH_{2}-pyridine; (iii) $\mathrm{R}^{3} \mathrm{MgX}$; (iv) $\mathrm{NaIO}_{4}(\mathrm{pH} 7) ;(v)$ pyrrolidine (dilute MeOH)
hexanones. To our knowledge there is little reported in the literature on these compounds, ${ }^{3-7}$ which could be interesting intermediates in the synthesis of particular drugs ${ }^{8}$ and diterpenoid alkaloids. ${ }^{5}$

We have previously reported a general synthesis of 2 -alkyl- and 2 -aryl-cyclohexanones (1), ${ }^{1}$ for which the aforementioned Grignard reactions were the key steps. As an extension of this work we now describe a convenient synthesis ($75-80 \%$ yield) of 2,6 -diaryl- and 2-alkyl-6-aryl-cyclohexanones (4) with the two substituents trans, starting from ketones (1) through the reaction sequence depicted in the Scheme.

RESULTS AND DISCUSSION

According to the reaction mechanism previously reported ${ }^{2}$ for the conjugated addition of a Grignard reagent to arylazocyclohexenes, the hydrazones (3) must have the syn-configuration with respect to the entering group R^{3} which, in turn, will have axial orientation. The stereochemistry at $\mathrm{C}-2$ and $\mathrm{C}-6$ of the hydrazones ($3 \mathrm{a}, \mathrm{b}, \mathrm{d}$, and f) was determined by ${ }^{1} \mathrm{H}$ n.m.r. spectral analysis. Compound (3a) shows two well-resolved signals corresponding to an equatorial $\left[\delta 4.2, W_{\frac{1}{2}} 9.5 \mathrm{~Hz}\right]$ and an axial [$\delta 3.65, W_{\frac{1}{2}} 17 \mathrm{~Hz}$] benzylic proton, respectively; similar spectral features are displayed by compounds (3 b , d, and f) (see Table 2).

Little information can be drawn from the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (3c), since the signal for the proton geminal to the $\mathrm{CH}_{2} \mathrm{Ph}$ group is overlapped by those of benzylic protons of the same group. The hydrazone (3e) could not be isolated because of its easy auto-oxidation into the 1-hydroperoxy-1-phenylazo-derivative. However, the structures of (3 c and e) can be assigned by analogy with those of the similar compounds ($3 \mathrm{a}, \mathrm{b}, \mathrm{d}$, and f).

The stereochemistry of the substituted cyclohexanones (4) must be the same as that of the corresponding hydrazone (3), as regards the relative configurations of C-2, $\mathrm{C}-4$, and C-6. In fact, compounds (4) are obtained from (3) under non-epimerising hydrolytic conditions. ${ }^{1,9}$ The trans relationship between the substituents at C-2 and C-6 was evident from the ${ }^{1} \mathrm{H}$ n.m.r. spectral data of $(4 \mathrm{e}$ and f). Compound (4e) shows a signal [$\delta 3.55, W_{\frac{1}{2}} 16$ $\mathrm{Hz}]$ for an axial benzylic proton and a doublet [$\delta 1.15, J$ $7.5 \mathrm{~Hz}]$ typical of an axial methyl group. Compound (4f) exhibits two distinct signals corresponding to an

Table 1
Physical, analytical, and spectral data of arylazocyclohexenes (2a-d)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{\begin{tabular}{l}
Compound (2a) \\
(2b)
\end{tabular}} \& \multirow[b]{4}{*}{\[
\begin{aligned}
\& \text { M.p. }\left({ }^{\circ} \mathrm{C}\right) \\
\& 105-106 \\
\& \text { (ethanol) }
\end{aligned}
\]} \& \multirow[b]{4}{*}{Formula
\[
\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2}
\]} \& \multicolumn{6}{|c|}{Analysis (\%)} \& \multirow[b]{4}{*}{\[
\begin{gathered}
\lambda_{\max .}{ }^{a} / \mathrm{nm} \\
434
\end{gathered}
\]} \& \multirow[b]{3}{*}{\(\delta\left(\mathrm{CDCl}_{3}\right)\)} \\
\hline \& \& \& \multicolumn{3}{|c|}{Found} \& \multicolumn{3}{|c|}{Required} \& \& \\
\hline \& \& \& C \& H \& N \& C \& H \& N \& \& \\
\hline \& \& \& 82.5 \& 6.7 \& 10.8 \& 82.4 \& 6.9 \& 10.7 \& \& 7.8-7.0 (11 H, m, Ar-H and vinyl H), \(4.4\left(1 \mathrm{H}, \mathrm{m}, W_{z} 13.5\right.\) \(\mathrm{Hz}, \mathrm{CHPh}), 3.0-1.3(6 \mathrm{H}, \mathrm{m}\), aliphatic ring H) \\
\hline (2b) \& \[
\begin{gathered}
99-100 \\
\text { (ethanol) }
\end{gathered}
\] \& \(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}\) \& 82.3 \& 6.95 \& 10.3 \& 82.55 \& 7.3 \& 10.15 \& 432 \& 7.7-6.8 (11 H, m, Ar-H and vinyl H), 4.1 (\(1 \mathrm{H}, \mathrm{m}, W_{\ddagger} 17\) \(\mathrm{Hz}, \mathrm{CHPh}), 2.6-0.8(5 \mathrm{H}, \mathrm{m}\), aliphatic ring H), \(1.0(3 \mathrm{H}, \mathrm{d}\), \(J 5.5 \mathrm{~Hz}, \mathrm{Me})\) \\
\hline (2c) \& \[
\begin{aligned}
\& 117-119 \\
\& \text { (ethanol) }
\end{aligned}
\] \& \(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2}\) \& 82.5 \& 8.15 \& 8.85 \& 82.95 \& 8.25 \& 8.8 \& 436 \& 7.5-6.9 (11 H, m, Ar-H and vinyl H), \(4.0\left(1 \mathrm{H}, \mathrm{m}, W_{\text {t }} 20\right.\) \(\mathrm{Hz}, \mathrm{CHPh}), 2.7-0.8(5 \mathrm{H}, \mathrm{m}\), aliphatic ring H), \(0.95(9 \mathrm{H}, \mathrm{s}\), \(\mathrm{CMe}_{3}\)) \\
\hline (2d) \& \[
\begin{gathered}
118-119 \\
\text { (methanol) }
\end{gathered}
\] \& \(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2}\) \& 83.1 \& 8.1 \& 8.75

$\mathrm{~N}=\mathrm{N}$ \& 83.1 \& 8.5 \& 8.45 \& 433 \& 7.5-6.9 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$ and vinyl H), $4.0\left(1 \mathrm{H}, \mathrm{m}, W_{1} 20\right.$ $\mathrm{Hz}, \mathrm{CHAr}), 2.7-0.8(5 \mathrm{H}, \mathrm{m}$, aliphatic ring H$), 2.2(3 \mathrm{H}, \mathrm{s}$, ArMe), $0.9\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$

\hline
\end{tabular}

equatorial [$\left.\delta 3.95, W_{\frac{1}{2}} 9 \mathrm{~Hz}\right]$ and an axial $\left[\delta 3.65, W_{\frac{1}{2}} 18\right.$ $\mathrm{Hz}]$ benzylic proton, respectively.
The ${ }^{1} \mathrm{H}$ n.m.r. spectra of ($4 \mathrm{a}-\mathrm{d}$) did not enable the $\mathrm{C}-2$ and C-6 protons to be distinguished (see Table 3); however, unambiguous confirmation of the stereochemistry of ketones (4) was achieved by their basecatalysed equilibration into the more stable all-cisisomers (5).

EXPERIMENTAL

${ }^{1}$ H N.m.r. spectra were recorded with a JEOL JNM 60 HL spectrometer (SiMe_{4} as internal standard) and i.r. spectra with a Perkin-Elmer 257 spectrophotometer. U.v. spectra were determined for solutions in 95% ethanol with a Perkin-Elmer 124 spectrophotometer. Analytical t.l.c.
plates were coated with silica gel G (Merck). Arylazocyclohexenes were purified by column chromatography on alumina (Merck) (elution with light petroleum, b.p. 40-70 ${ }^{\circ} \mathrm{C}$). Cyclohexanones were purified by column chromatography on extra pure silica gel (Merck; 70-230 mesh ASTM) (elution with benzene).

Arylazocyclohexenes (2a-d).-A solution of bromine $(0.01 \mathrm{~mol})$ in $\mathrm{CCl}_{4}(15 \mathrm{ml})$ was added dropwise and with stirring to a solution of cyclohexanone (1a-d) ${ }^{1}$ in 20 ml of the same solvent, maintaining the temperature at $0-5{ }^{\circ} \mathrm{C}$. The reaction mixture was washed with water until neutral, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. To the oily residue pyridine $(0.01 \mathrm{~mol})$ was added and the temperature was kept at $70^{\circ} \mathrm{C}$ for 2 min . The reaction mixture was cooled at room temperature, treated with THF (3 ml), and poured with stirring into a solution of phenylhydrazine (0.01 mol) in THF (20 ml) cooled at $0^{\circ} \mathrm{C}$. Stirring was continued for 3 h .

Table 2
Physical, analytical, and spectral data of cyclohexanone phenylhydrazones (3a-d, and f)

TABLE 3
Physical, analytical, and spectral data of cyclohexones (4a-f)

The products were obtained in $90-95 \%$ yield. Physical, analytical, and spectral data are reported in Table 1.

Cyclohexanone Phenylhydrazones (3a-d and f).--The reactions of arylazocyclohexenes ($2 \mathrm{a}-\mathrm{d}$) $(0.01 \mathrm{~mol})$ were carried out with the Grignard reagents (PhMgBr, p-tolyl$\mathrm{MgBr}, \mathrm{PhCH}_{2} \mathrm{MgCl}$, and MeMgI) (0.025 mol) in anhydrous ether with stirring at room temperature for 3 h . The mixtures were hydrolysed with aqueous 20% ammonium chloride. The organic layers, after washing with water until neutral, drying, and evaporation of the solvent, gave the products ($3 \mathrm{a}-\mathrm{d}$ and f) in almost quantitative yield. Physical, analytical, and spectral data for ($3 \mathrm{a}-\mathrm{d}$ and f) are reported in Table 2. Compound (3e) easily underwent auto-oxidation furnishing 1-hydroperoxy-1-phenylazo-2-methyl-4-t-butyl-6-phenylcyclohexane, m.p. $138-139^{\circ} \mathrm{C}$ (from light petroleum) (Found: C, 75.6; H, 8.2; N, 7.35.
$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 75.4 ; \mathrm{H}, 8.25 ; \mathrm{N}, 7.65 \%\right)$; δ $7.65-6.9(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.0\left(1 \mathrm{H}, \mathrm{m}, W_{\frac{1}{2}} 17 \mathrm{~Hz}, \mathrm{C} H \mathrm{Ph}\right)$, $3.45(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.85(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}), 2.5-1.2(5 \mathrm{H}, \mathrm{m}$, aliphatic ring protons), $1.4(3 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{Me})$, and 0.95 $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right) ; \lambda_{\text {max }} 407 \mathrm{~nm}\left(\mathrm{~N}=\mathrm{N}\right.$ bond, $\left.n-\pi^{*}\right)$.

Cyclohexanones ($4 \mathrm{a}-\mathrm{f}$).-The phenylhydrazone (3a-d, and f) (0.005 mol) was dissolved in methanol ($50-70 \mathrm{ml}$) and hydrolysed at pH 7 with sodium periodate as previously described for trans-2,4-disubstituted cyclohexanones. ${ }^{1}$ Compound (4e) was obtained in the same way from the Grignard reaction mixture of (2c) with MeMgI, without isolating the hydrazone (3e). Compounds (4a-f) were obtained in quantitative yield. Physical, analytical, and spectral data are reported in Table 3.

Cyclohexanones (5a-e).-The compounds were obtained in almost quantitative yield from the isomers (4a-f) by

Table 4
Physical, analytical, and spectral data for cyclohexanones (5a-e)

equilibration in basic medium. ${ }^{1}$ Physical, analytical, and spectra data are reported in Table 4.

This work was supported by a grant from C.N.R., Rome.
[9/151 Received, 31st January, 1979]
REFERENCES
1 Part 2, S. Bozzini, S. Gratton, G. Pellizer, A. Risaliti, and A. Stener, J.C.S. Perkin I, 1979, 869.
${ }_{2}$ S. Bozzini, S. Gratton, A. Risaliti, A. Stener, M. Calligaris, and G. Nardin, J.C.S. Perkin I, 1977, 1377.
${ }^{3}$ B. E. Betts and W. Davey, J. Chem. Soc., 1961, 3333
${ }^{4}$ R. F. C. Brown, G. J. Hardham, and R. A. Leppik, Austral. J. Chem., 1972, 25, 2049.
${ }^{5}$ I. Iwai, A. Ogiso, and B. Shimizu, Chem. Ind. 1962, 1288.
${ }_{6}$ A. N. Kost and I. P. Sugrobova, Vestnik Moskov. Univ., Ser. II Khim., 1963, 18, 75 (Chem. Abs., 1963, 59, 7459).
${ }^{2}$ F. Johnson and D. T. Dix, J. Amer. Chem. Soc., 1971, 93, 5931.
${ }^{8}$ T. Kametani, S. Noguchi, I. Agata, T. Aono, K. Kigasawa, M. Hiiragi, T. Hayasaka, and O. Kusama, J. Chem. Soc. (C), 1971, 1047.
${ }^{9}$ E. J. Corey and D. Enders, Tetrahedron Letters, 1976, 3.

